

Internetdagarna 2001

IPv6 in Hardware - next step in the evolution

Gartner Group has predicted that, by 2006, 50% of all carriers in the Asia-Pacific region will be running IPv6 in their networks

IPv6 Evolution

network protocol

- Providers and Enterprises IPv6 in 3GPP networks
- IPv6 in ISP backbone

3. Deployment

• IPv6 in Production Network at Service

2. Commercialization Product Development

- Trial Networks
- Early adopters

1. Standardization

• Core Specs in draft standard

1994-1998

1998-2002

2002-2005/6

2005/8 -

4. IPv6 >> IPv4

IPv6 has surpassed

IPv4 as the

dominant

23/10/01

Internet Dagarna 2001, Thomas Eklund

IPv6 Milestones

- IPv6 core specs reached draft standard in 98
- IPv6 forum started March 99
- 6bone has been operational since June 96
- I ANA i ssues I Pv6 addresses since July 99
- Cisco will have full IPv6 support. Both its software and hardware products will support IPv6.
- EU will drive IPv6
- Microsoft includes IPv6 in the Windows XP Professional in Oct 2001

- Nokia are building their 3rd Gen Products for both Voice and Data to run over IPv6
- 3GPP Mandated I Pv6 for Release 00 of GPRS.
- MWIF mandated IPv6 in May 2000
- Telia has announced the first European commercial IPv6 network with the first stage completed in June 2001

NTT

- Sony announces that all its future gaming and home equipment platforms will support IPv6
- Cisco together with HP, Motorola, Microsoft, SUN, IBM partners to push IPv6 development in Jul 2001

1. Standardi zati on

Key Message — The Core Specifications has been ready since 98

Where in the Standardization Process is IPv6?

2. Commercialization

Products get on the market, Production network with IPv6 starts getting deployed

Commercial i zati on

- Commercial Products are made for IPv6
 - Routers and Switches
 - Servers
 - Handsets (PDA, cellphones, hosts etc)
 - RNC, SGSN, GGSN etc.
 - Operating Systems
 - RTOS
 - Network Processors
 - Etc.

Internet Dagarna 2001, Thomas Eklund

Things that need to be resolved

- Multihoming which scales Multi6 WG
- Enterprises want to connect to more than one ISP to improve connectivity
 - Better Performance
 - Load Sharing among several ISP connections
 - Redudancy from several ISPs

ALL IP Service Provider Network To WAN Peer WAN Application/Content To WAN Peer Servi ce Provi der 24 MAN Resi denti al Enterpri se Radi o Access Network Internet Dagarna 2001, Thomas Eklund 23/10/01 11

Equipment that is not affected

- Euipment that is not affected
 - WDM/DWDM, Sonet/SDH ADM, OADM, Sonet Crossconnects
- Euipment that is affected but is easy to ugrade (e.g with SW)
 - CPE, Access Routers, SOHO Routers
- Euipment that is affected and where the upgrade is harder (e.g. In HW)
 - Core Routers, Edge Routers, MultiService Platforms, IP aggregation router, L2-L3 Switches, L4-L7 Switches, IP Service Switches, VoIP Gateway, Mobile Edge Router (GGSN), NAT, Firewall

Router System

SFI

Switch Fabric Interface (CSIX, ATM or Custom) Interfaces Network Interface (ATM, PoS or Ethernet)

23/10/01

Internet Dagarna 2001, Thomas Eklund

Product Status - Routers and Switches components

- Software
 - RTOS VxWorks, OSE-Delta, IOS supports IPv6
 - OS- BSD (FreeBSD, NetBSD, OpenBSD, BSDI),
 Solaris supports IPv6
- Hardware that is not affected
 - Tranceivers, Transponders, Framers, MAC,
 Mux/Demux, Serdes, PHY, Switchfabrics are not affected by IPv6
- Hardware that is affected
 - CAM/SRAM/Classification Co-Processors supports IPv6 based lookups and classification
 - Network Processors/Custom ASICs/ASSP (Packet Processors, Traffic Managers, Security Processors)

IPv6 Challenges in HW

- IPv6 Adresses
- IPv6 Multicast
- Extension headers
- IPv6 Classification
- IPv4 to IPv6 NAT/PT

Internet Dagarna 2001, Thomas Eklund

IPv6 Adresses

Locator I dentifier
Routing Part, 8 bytes Interface Part, 8 bytes

- Routers needs only to store the Network Prefix which is 64 bits for unicast for next hop
- IPv6 Multicast needs to store 32 bits (or potentially bigger) (plus 128 bits for RPC (i.e. Full IPv6 address)

23/10/01

Internet Dagarna 2001, Thomas Eklund

Extension headers

Transport Header Offset?

Basi c Header	. , ,	asic Hop-by Dest Routing Fragmer eader Hop Option header Heade		ESP Header		Transport Header	Payl oad
------------------	-------	---	--	---------------	--	---------------------	----------

- Good if you only would like to do L4 classification
- L4 classification is very expensive (L4-L7 switches, NAT, IP Service Switches, Firewall)
- What happens with IP sec encrypted packets?

Xelerated's Network Processors

The only network processor that can be programmed to have full I Pv6 support

Xelerated's Network Processors

23/10/01

Internet Dagarna 2001, Thomas Eklund

Xelerator Product Family - IPv6 ready

- Xelerator™ X40 Packet Processor: April 2002 Supports Edge and Core, 10-40 Gbps wire-speed, 8 SPI-4 Phase 2 ports, 3x over-clocked, Fully programmable
- Xelerator™ T40 Traffic Manager: 03-2002 Supports Edge and Core, 10-40 Gbps wire-speed, 8 SPI-4 Phase 2 ports, Full Diffserv support, Advanced Buffer Management, SAR and Scheduling and Shaping
- Development Tools: December 2001
- Forwarding Plane Apps: December 2001
- Engineering Services: December 2001
- Control Plane SW: March 2002

23/10/01

Cisco Roadmap: The Confluence of IPv4/IPv6

		IOS Release	Market Target				
_	IOS upgrade = Free IPv6	Phase I IOS 12.2(1)T May 2001	Early Adopter Deployment 800, 1400, 1600, 1700, 2500, 2600, 3600, 4500, 4700, AS5300, AS5400, 7100, 7200, 7500 Series Routers				
		Phase II H2 CY 2001	Production Backbone Deployment 7600, 12000 Series Routers				
		Phase III CY 2002	Enhanced IPv6 Services Hardware Acceleration				

Src: Ci sco

23/10/01

Internet Dagarna 2001, Thomas Eklund

Nokia Roadmap: All-IP(v6) System Level Architecture

Commercial Networks

- VBNS
- Telia
- NTT Communications
- IIJ
- Zama
- 6Ren

Production sub TLA
 ARIN - 21 (US)
 RIPE-NCC - 45
 (Europe)
 APNIC - 39

