Metro technologies GE, SRP, RPR and more abbreviations

Lars Hanson, Iha@cisco.com Stefan Lindeberg, stefan@lindeberg.net

Agenda

- Introduction
- Gigabit Ethernet
- Cisco Spatial Reuse Protocol, SRP
- Building metro networks
 - SRP vs. Ethernet
- New technologies
 - Resilient Packet Ring
 - 10 GE
- Q+A

Stefan Lindeberg

- 16 years in datacom
 - IBM, NSC, Cisco
- Board member
 - Wavium, Xelerated, HyGlo, Comlase, Lumentis, PacketFront, Transmode
- Advisor to:
 - Dynarc, Startupfactory, Cygate

Lars Hansson

- 15 years in datacom
 Upnet, Telia, Cisco
- Bla bla bla

Ethernet

"The value of the network expands exponentially as the number of users increases"

A reflection

- Remote Bridging
 - Remember Vitalink
 - Didn't scale, needed layer 3 => router
- ATM LAN Emulation
 - Oops didn't scale either
 - Lets add $\frac{1}{2}$ a router => MPOA
 - Didn't fly anyway
- MPLS L2 VPN
 - Here we go again!!!

- SRP Protocol
- SRP Fairness
- SRP Protection

- Cisco patent pending technology
- New MAC for LAN, MAN and WAN application
 Spatial Reuse Protocol (SRP)
- Based on ring—dual counter rotating ring

- Plug and play
- Multicast support
- Support traffic prioritization
- Uses the SRP fairness algorithm (SRP-fa) to control access to the ring and enforce fairness
 No token—unlike Token Ring or FDDI
- Scalable to large number of nodes on the ring

- Intelligent Protection Switching (IPS)
 - Survivability in the event of fiber facility or node failure, or signal degradation
- Media independent protocol
 - Initial implementation uses SONET/SDH framing

Spatial Reuse

- The SRP protocol derives it's name from the spatial reuse capability
- Bandwidth consumed only on traversed segment
- Unicast packets travels along ring spans between the src and dest nodes only
 - -Destination stripping

SRP Ring

- An SRP ring is a bi-directional dual counter rotating ring
- The rings are referred to as Outer and Inner rings
- Both rings are used to transport data and control packets
 - Data packet is sent in one direction and the corresponding fairness packet is sent the opposite direction

SRP Packet

- SRP is a media independent MAC layer protocol
- The initial implementation utilizes SONET/SDH framing
- Concatenated payloads only

Single Subnet

- Both Outer and Inner rings are on the same IP subnet
- This enables rapid re-optimization of ring path selection and minimize route flaps in a ring wrap situation
- Ring wraps are handled by the lower layer and thus transparent to layer 3 routing protocols

SRP Fairness Algorithm

- SRP-fa is the mechanism that ensures
 - Global Fairness—each node gets a fair share of the ring bandwidth
 - Local Optimization—node maximally leverage the spatial reuse properties of the ring
 - Scalability—the ability to build large rings with many nodes that spans across large geographically distributed area

Intelligent Protection Switching

- IPS provides SRP with a powerful self healing feature which automatically recovers from fiber facility or node failure, or signal degradation
- IPS is analogous to the self healing properties of SONET/SDH rings
 - but without the need to allocate protection bandwidth

IPS

- Topology knowledge independence
- Ring wrapping to bypass failed fiber or node
 Transparent to the layer 3 routing protocols
- Protection switching event hierarchy
- Ring restores in \leq 50 msecs

Wrapped Packet Flow

Cisco SRP vs Ethernet in a Metro Environment

 128 nodes per SRP ring vs. 7 nodes per Spanning Tree ring –Work in progress within IEEE to change, 802.1w

SRP vs Ethernet - Restoration

SRP

Switched Ethernet

50ms SRP ring restoration vs. 5-50 seconds Layer 2 restoration

-Spanning tree work in progress IEEE 802.1w

- Layer 3 Ethernet and routing protocol, 2-90 seconds
- Head end must be layer 2 device to avoid partitioning –Layer 3 can be separate device or integrated

- Predictable latency and jitter with SRP
- No packet loss during ring transit
 Packet on the ring will not be dropped

- SRP Extensive trouble-shooting capabilities due to SDH/SONET framing
- Ethernet almost binary
- CAPEX vs. OPEX

802.17 Resilient Packet Ring RPR

802.17 RPR

- IEEE 802 standardization effort for resilient packet rings
- Rules of the game, no existing technology can "win"
 - Cisco SRP
 - Dynarc DTM
 - etc

802.17 Timeline

- Proposal cutoff November 2001
 - Currently two proposals
 - 1. Group 1 RPR proposal based on modified SRP
 - Cisco, Riverstone, Spirent Communications, AMCC, Mindspeed

 - 2. Group 2 RPR proposal
 - Alcatel, Dynarc, Nortel, Lantern, Luminous, NEC,
- First Draft January 2002
- Last addition May 2002
- WG Ballot July 2002
- Last change September 2002
- LMSC Ballot November 2002
- Standard March 2003

Group 1 RPR proposal

Group 1 RPR Proposal

- Based on SRP
- Enhanced Fairness Algorithm
 - Knowledge of affected SPAN's
- Both Wrapping and Steering for protection
- New Frame Format CRC on the packet header
- Physical Media SONET/SDH, GFP and Ethernet

Group 2 RPR proposal

Fundamentals of Group 2 RPR proposal

- Shared media architecture
- Fair access
- Active dynamic bandwidth management
- Bandwidth-aware MAC
- Maximize throughput on all links
- Support for multiple rings
- Steering-based protection scheme

Internetdagarna 2001

ietuagarita 2001

Internetdagarna 2001

Fairness

Service received by a subscriber is independent of the subscriber's location on the ring

- Fairness is not equality
- Fairness = weighted allocation of resources

Active Bandwidth Management

Dynamic flow control is essential for maximum network utilization in shared network environments

- Closed loop flow control scheme
- Fairness algorithm is an integral component of bandwidth management scheme
- Network performance limited by robustness, responsiveness and precision of flow control

RPR proposal BW management

- Congestion avoidance
- Active BW management
- Fair access as traffic pattern changes
- Dynamic o Reallocates resources, high through put as traffic profile changes
- Support for VoQ and eliminate HoL blocking maximize throughput on all links
- Support for N+ 1 ringlets
- Support for weight fairness

Maximize throughput on all links

Traffic over un-congested links should not be throttled because of congestion happening on unrelated links

• Requires knowledge of destination

Multi-rings Scalability

- Problems:
 - Limited transmission capacity on fibers
 - high speed optics expensive
 - costly to scale by increasing link speed
 - linear increase
 - One ring at a time
- Conclusion:
 - scale by adding multiple rings
- Benefits
 - each additional ring increases the capacity
 - cheaper to add ring than to increase speed
 - individual rings can be operated at different speed
 - one logical Mac--several physical
 - the rings are managed as one aggregated link

Steering Ring Protection

- Optimal performance after failure
- Sub-50ms service restoration

Steering Ring Protection

- Each station knows of a ring segment failure and steers ring traffic away from the failure within 50ms of the failure
- Ring protection is initiated by all stations that become directly aware of a failure via local detection or through broadcast announcement
- Each station uses its knowledge of the topology of the ring to know how and when to steer ring traffic away from a failure

Comparison of the two proposals

IEEE 802.17 proposals comparison

	Group 1	Group 2	
Protection	Wrapping or	Steering	
	steering		
Provisioning	Data centric	ADM like	
Transit buffers	2 buffers priority levels	1 buffer collision avoidance	
Fairness	Allow burst, manage when congested	Avoid congestion and allocate by request	

Summary: RPR proposals

- 802.17 = any current IP ring implementation
- Shared medium architecture
 - Transit path is part of the medium
 - Transit buffer is used for collision avoidance
- Active bandwidth management is required to provide fair access of ring capacity to stations
- Dynamic bandwidth management to avoid unused (wasted) capacity
- Bandwidth-aware MAC
 - Awareness of available capacity on links of the ring
- Maximize throughput on all links

10 Gigabit Ethernet IEEE 802.3ae

10 Gigabit Ethernet

- Timeline
- Overview
- PHY's and PMD's
- Status

Ethernet development

10GE Overview

- Uses 802.3:
 - MAC
 - Frame format
 - Min and max frame size
- Full duplex and fiber only
 - Doesn't need CSMA/CD
- Physical Coding Sublayer
 64B/66B
- LAN PHY and WAN PHY

10 GE layers **Higher Layers** LLC MAC Control MAC Media Independent **Reconciliation Sublayer (RS)** Interface XGMII XGMII XGMII 64B/66B PCS WAN 64B/66B PCS 04B/66B PCS WIS interface sublayer **PMA PMA PMA PMD PMD** Media PMD Dependent MDI MDI MDI Interface MEDIŲM MEDIUM MEDIUM **10GBASE-W 10GBASE-X 10GBASE-R**

Internetdagarna 2001

Putting it together

STACK	10 GE LAN PHY		10 GE W AN PHY
	SERAL		SERAL
MAC	10G B/S	10G B/S	10G B/S
PCS	64B66B	8B/10B	64B66B
PMD	1550nm	1310nm	1550nm
	1310nm		1310nm
	850nm		850nm
LINE RATE	10.3G B	4x3.125	9.953G B/S

10 Gigabit Ethernet Optical Transceivers (PMDs)

PMD	Fiber Supported	Diameter (Microns)	Bandwidth (MHz*km)	Distance (Meters)
850 nm serial	multimode	50	500	65
1310 nm WWDM	multimode single mode	62.5 9.0	160 N.A.	300 10K
1310 nm serial	single mode	9.0	N.A.	10K
1550 nm serial	single mode	9.0	N.A.	40K
Internetdagarna 2001				

