
+ =

System Architecture & Security

?

Martin Fredriksson
<m@carmensystems.com>

Experiences from real life design decisions
 or
A network and security expert in API land

Contents

• Introduction: lightspeed overview of the
Carmen system

• We have assumed control: System
Architecture views

• Steps in the right direction: Design examples
and discussions

Airline-in-a-box
Now

ControllerController

PaxPax

CrewCrew

ACAC

Recovery

Network

Planner

Network

Planner

Fleet

Planning

Fleet

Planning

ManpowerManpower

PairingPairingRosterRoster
Roster

Maintenance

Roster

Maintenance

Fleet

Assignment

Fleet

Assignment

Tail

Assignment

Tail

Assignment

Data Access and Versioning Engine -DAVEActuals

Analyzer,

Reporting

Analyzer,

Reporting

FeedbackFeedback

Disruption

Event

generation

Disruption

Event

generation

Pax BookingsPax Bookings
Demand

Forecaster

Demand

Forecaster

Rule And Value Evaluator -RAVE

Northwest

Deutsche Bahn
Lufthansa

British
Airways

Core
product

• Legality
• Quality
• Costs
• Reports
• Interfaces
• Colours
• etc...

• Optimization
 methods
• GUI
• Modelling tools like
 Rave and the report
 generator
• Basic functionality
(like security)

Carmen development/business model

Why Architecture?
What’s wrong with this picture?

MH

.NET

J2EE

Message hub

But what about:
Synchronizing activities?
Auditing?
System maintenance?
Deployment?
Network security? Not enough for a complete System…

Star Architecture

System Architecture Overview

Administrators

Engineers

Planners
Trackers

Others
Crew

Managers

APIs & IDEs

Planboards

Dashboards

Services

Portals

Reports

User Interfaces

Layered System and Security Model

Access Control Model

Key design principles:
Completeness: The ACS must always be invoked

(e.g. used in all access methods) and impossible
to bypass.

Isolation: The system must be tamper-proof.
Verifiability: The system must be shown to be

properly implemented.
Flexibility: The system should be able to enforce the

access control policies defined by specific
customer needs.

Simplicity: The security policy model should be kept
as simple as possible (to minimize ACSdb and
audit trail complexity) while still supporting the
flexibility principle.

Manageability: The system must be easily
manageable, via intuitive user interfaces using
terms/rules that users can understand.

Scalability: The system must support the number of
users/roles/data classes/resources needed by the
customer.

Reference Monitor Access Control model

All attempts by a subject to access an
object are controlled by the reference
monitor in accordance with a security
policy embodied in the access control
database. Security-relevant events are
stored in the audit trail db (audit file).

Three levels of the ACS

Client/Server Model

Different views for different roles

Data Management (DAVE) layered model

DAVE - High Availability

Deployment example

System services (1)

Installing a new machine

Summary

• Security = ACS + Quality
– Much of the security design is for redundancy, load

balancing and other system quality issues
– Protection against mistakes as well as deliberate attacks

• Real security must be supported by in-depth
architecture (and implementation); there just is no
shortcut…

• The network security view is necessary as a
complement to components views
– Components and APIs for developers
– Protocols and Data Formats are a must for system security

I conclude that there are two ways of constructing a
software design: One way is to make it so simple that
there are obviously no deficiencies and the other way
is to make it so complicated that there are no obvious
deficiencies.

C.A.R Hoare, Turing Lecture
”The Emperor’s Old Clothes”,
CACM February 1981, pp. 75-83

THE END

