# ··II·II·I CISCO

#### Routing Security Strategy



November 2009 Janne Östling

 Behringer - SP Security Strategy
 © 2009 Cisco Systems, Inc. All rights reserved.
 Cisco Internal Use Or

#### The Crystal Ball



#### **Predicting Future Trends**

#### Networks in 2014

- Access / core bandwidth up by factor ~10
- Address exhaustion: IPv6 widely deployed Carrier-grade NAT widely deployed
- Any device, anywhere, any time Mobility, diverse client devices
- Clients remain "intelligent" Multiple OSs, running applications Still "untrusted" (can run applets, etc)
- Consolidation of data centers in the Enterprise (cloud)
- P2P more widely deployed

#### Mobile Networks Will Become Like Fixed Networks



- Powerful clients
   CPU, memory, bandwidth
- Same threats Malware, bots, ...
- Firewalling towards mobile devices will remain in place
  - → This will change protocols (Skype)

## **Complexity Is Increasing**



- Applications, OSs, networks will become more complex
  - More lines of code
  - More functions
- Lack of visibility
  - More "covert channels" (HTTP tunneling)

More encryption (SSL, etc)

- Double and triple NAT
- Home networks more complex New endpoints: STB, Playstations, ...
- Router resource management and protection increasingly important

#### **Threats Evolution**

- Economically based fraud will persist / increase
   Potential other motivations: Political, military, ...
- Malware will use SSL, use covert channels
   Will look like a banking application, or:
   Piggyback on legitimate connections, as covert channel
- Security measures will increase But so will hackers' capabilities
- Increasing internal threats: sabotage, misconfigurations

 $\rightarrow$  Basically, no change, except more obfuscation (SSL)

# The Future of the Data Plane



#### Packet Forwarding and Handling

#### **Data Plane Vision**

"No data plane packet will have the potential to cause harm to the network"



## **Data Plane Strategy**

 Capability to view and control IPv4/v6 flows:

Monitor

Filter

Re-mark (QoS)

Service Routing

Dynamically, policy based Route flows to service points

#### Based on:

L3/L4 parameters Subscriber policy

All at line rate



#### **Data Plane Execution, #1**

 Identify and list known exceptions to the rule Where transit packets can cause harm
 E.g.: TTL expiry, IPv4 options, IPv6 HbH, prec 6/7, ...

Audit all SP platforms (define all platforms):

| Platform     | Issue      | vulnerable<br>by default                        | commands to fix/reduce issue | remaining<br>issue       |
|--------------|------------|-------------------------------------------------|------------------------------|--------------------------|
| GSR<br>(IOS) | TTL expiry | yes                                             | CoPP (partial fix only)      | LC can be<br>DoSed       |
| 7600         | TTL expiry | yes<br>↑<br>"yes" means<br>customer must        | mls-rate limiter             | none                     |
|              |            | do something;<br>could we make<br>this default? | develop a solution           | need to improve solution |

#### **Data Plane Execution, #2**

 Define minimum data plane feature set for core and edge platforms (and core and edge line cards), for IPv4/v6

uRPF, ACLs, NetFlow, QoS, ... (define in detail)

Audit all SP platforms

Define scenarios (e.g., threat model, attack forms, etc)

Develop features where required

# The Future of the Control Plane



**Routing and Switching** 

#### **Control Plane Vision**

"From the outside of a network, it is not possible to interfere with any control plane process"

"All control plane protocols are hardened on transport, content, and service level"



## **Control Plane Strategy**

- Priority 1:
  - Complete isolation from outside
  - BGP: GTSM: LPTS: iACL
  - IGP: make unreachable
  - Option: MPLS with all external services in a VPN
- Priority 2:
  - Hardening Authentication Device level protection (LPTS, CoPP, ...)



#### **Control Plane Execution: BGP Security: Prefix hijacking**

- Currently punctual events
  - will get worse, due to IPv4 address space exhaustion
- Monitor: Hijacking monitoring
- Currently, prefix hijacking cannot be prevented Focus on fast detection and reaction

 Need SIDR, with a secure BGP variant soBGP / S-BGP

# **Validating Routing**

**Current SIDR Work** 

- Origin authentication only
- The RIRs maintain a database of all known address assignments

Route Origination Authorizations, or ROAs

X.509 certificates containing the assigned AS and a prefix block

 This database is distributed through rsync



# **Validating Routing**

**Current SIDR Work** 

- Each edge (eBGP) router in the network connects to a local server
- Some communication protocol allows the router to communicate with this server
- Through this, the router determines if each advertisement is valid or not



#### **BGP Bestpath Selection Modifications**

Path Validation States

-BGP\_PFX\_STATE\_VALID (Lookup Successful)

-BGP\_PFX\_STATE\_NOT\_FOUND (Not in the table)

–BGP\_PFX\_STATE\_INVALID (Lookup invalid -different origin AS or masklen not in range)

BGP Bestpath Modifications

Input: Received Path, Current Bestpath

If Received Path is an ibgplearnt path then skip the Prefix Origination check

If Received Path's Prefix Origination Check state is BGP\_PFX\_STATE\_INVALID then prefer the Current bestpath

else If Received Path's Prefix Origination Check state > Current Bestpath Prefix Origination Check state, then prefer the Current

bestpath

the

else (they are equal) proceed to next bestpathcheck step

Rest of the BGP BestpathSteps

#### **BGP Cli Modifications**

New CLI

-Disable Prefix Validation Globally

–Disable Prefix Validation per EBGP Peer

–Disable Prefix Validation per set of prefixes

 When disabled, the prefix origin validation state of EBGP Learnt routes will be set to BGP\_PFX\_STATE\_NOT\_FOUND

#### BGP Cli Modifications (cont'd) Policy Knobs

- Allow routes with prefix origin validation state of BGP\_PFX\_STATE\_INVALID for further BGP bestpathselection
- Disallow BGP\_PFX\_STATE\_NOT\_FOUND from further being evaluated in BGP bestpathselection
- Usage of communities for announcing validation states using outbound policies

#### **Dynamic Control Plane Policing**

- (D)CoPP is made possible by Local Packet Transport Service
  - –LPTS enables distributed applications to reside on any or all RPs, DRPs, or LCs
  - -Filters local 'for-us' packets and sends them only to the nodes that need them
- LPTS has HW policers on line cards to limit traffic sent to (D)RPs DCoPP
  - -LPTS entries in TCAM classifies packets to select a policer
  - –Polices on protocol (BGP, OSPF, SSH) and flow state (BGP established flows, BGP listen)
  - -Policing done on the LC ASIC before packets hit RP/LC CPU
  - -All filters are automatically and dynamically installed by the IOS XR infrastructure

#### For-us packet path overview



#### **PSE Policiers**

| Punt-all enabled          | Handle large                          | L2 low priority                      | L2 control                       | CDP                         | IPv6 PLU Punt                       |
|---------------------------|---------------------------------------|--------------------------------------|----------------------------------|-----------------------------|-------------------------------------|
| PLIM ASIC header<br>error | Ethernet loopback                     | Bundle Control                       | Unknown OSI NLP                  | ARP                         | IPv6 frag needed                    |
| Diagnostic                | IPv4 Options                          | IPv4 RSVP<br>w/options               | IPv4 IGMP<br>w/options           | RARP                        | IPv6 MC do all but<br>forward       |
| IPv4 PIM w/options        | IPv4 TTL expiration                   | Iv4 PLU no match                     | IPv4 PLU punt                    | CGMP                        | IPv6 PLU no match                   |
| IPv4 PLU receive          | IPv4 frag needed<br>but DF set        | IPv4 L3LI punt                       | IPv4 L2Li punt                   | SAP                         | IPv6 BFD Async                      |
| IPv4 L2LBE RP<br>punt     | IPv4 cannot frag,<br>MTU too small    | IPv4 BFD Async                       | IPv4 BFD Echo                    | IPv4 tunnel MTU<br>exceeded | IPv6 PLU receive                    |
| IPv4 MC do all            | IPv4 MC do all but<br>forward         | IPv4/IPv6<br>incomplete<br>adjacency | IFIB lookup miss                 | ACL dency gen<br>ICMP       | IPv6 BFD Echo                       |
| ACL log                   | IPv6 link local                       | IPv6 routing<br>extension hdr        | IPv6 hop-by-hop<br>options       | IPv6 TTL expiration         | IPv6 L3LI punt                      |
| MPLSL2LI punt             | MPLS TTL<br>expiration, IP<br>payload | MPLS PLU                             | MPLS PLU receive                 | IPv6 L2LI punt              | IPv6 MC directly<br>connected       |
| L2VPN VCCV                | MPLS incomplete<br>adjacency          | MPLS IPv4 frag<br>needed but DF set  | MPLS IPv4 options<br>frag needed | IPv6 MC do all              | ILMI Packet                         |
| ATM LC Packet             | Mac record                            | OAM Event                            | OAM Packet                       | MPLS L3LI punt              | MPLS IPv6 frag<br>needed            |
| Service Card Punt         | EOAM CFM non<br>CCM Packets           | EOAM EFM<br>Packets                  | QNET                             | Biscuit DCAP TTL<br>error   | Biscuit MTU<br>Violation and DF set |

# The Future of the Management Plane



#### **Configuring and Monitoring Networks**

#### **Management Plane Vision**

"From the outside, management channels are unreachable."

"There are secure versions of all management protocols."



#### **Management Plane Strategy**

- Complete isolation of management channels from the outside
  - Making devices unreachable from the outside
  - Management plane protection
  - Automatic, with minimum configuration
- Support of secure protocols for all management channels

Every management access is protected via strong authentication (e.g., AAA) and crypto;

 Support \*unified\* role based access control mechanisms



#### The Overall Vision



#### The ideal SP architecture, from a security point of view

#### Isolation between "inside" and "outside"



All external traffic will be a "VPN" on an SP core

- $\rightarrow$  Isolation towards outside world
- $\rightarrow$  Control, management plane remain "inside" only
- $\rightarrow$  Data plane traffic has no effect on network

#### **Target Architecture**

 RFC 4364 networks ideally suited: Strong separation outside / inside; but:

- Need to make Internet in VRF a reality!! All PE platforms!
- Need to further secure the external facing interface So far, manual security (iACL, etc) required Need to automate

Good example: Management plane protection

Goal: By default, PE does not "receive" any packets coming in on an external i/f. Exceptions (for routing, ICMP, etc) need to be explicitly configured.

#### **Summary**

#### "Be Careful or Be Roadkill" — Calvin

#### Important strategies:

Architectural isolation inside/outside

Internet in a VRF

Secure Inter Domain Routing

CoPP / LPTS

Behringer - SP Security Strateg

#