Explainable and Ethical Machine Learning with applications to healthcare

Panagiotis Papapetrou, PhD Professor, Stockholm University

Explainability in Machine Learning

attributes

Properties of a good classifier include:

- predictive performance
- (e.g., why is a person healthy?)

The EXTREMUM team

SU

Panagiotis Papapetrou

Lars Asker

Stanley Greenstein

5 PhDs

1 Postdoc

1 Developer

KTH

RISE

Externals

Karolinska Institute

Funded by Digital Futures 2020-2023

The EXTREMUM framework

Electronic Health Records (EHRs)

- Diagnoses (ICD)
- Medications (ATC)
- Procedures (CPT)
- Blood tests
- More complex data sources
 - o clinical notes
 - medical images
 - o MRIs
 - o ultra-sounds
 - o ECGs
 - O ...

I25.110

A01AD05

Pilar I: Data Management & Integration

- How to integrate heterogeneous data sources
- Define a unifying data representation that can facilitate machine learning
- Maintain the anonymity of the individuals and the integrity of their private information

Electronic patient records

Karolinska University Hospital (TakeCare)

Chemical compound data

Individual case safety reports

WHO Collaborating Centre for International Drug Monitoring (VigiBase)

Pharmaceutical companies

Defining temporal abstractions

- EHR: patient record
- Many complex variables (static, temporal, text, images)
- An event of interest **H**: e.g., an Adverse Drug Event (ADE), Heart Failure

Pilar II: Explainable Machine Learning

- Trade-offs between <u>explainability</u> + <u>accuracy</u>
- Ability to understand the predictions + act to prevent undesirable outcomes without compromising predictive performance

Time series explainability

Attention-based ADE prediction

X-Ray Ranking and Explanatory Diagnostic Tagging

FINDINGS: The cardiac contours are normal. XXXX basilar atelectasis. The lungs are clear. Thoracic spondylosis. Lower cervical XXXX arthritis.

TAGS: Atelectases, Cervical Arthritis, Atelectasis, Spondylarthritis. Thoracic Spondylosis.

Pilar III: Legal and Ethical Compliance

- Legal requirements for explanations (GDPR)
- Bias detection and mitigation in the training data:
 - o discriminatory variables
 - o complex relation patterns
- Formulation of a legal framework
 - o ability to check the legal compliance of ML algorithms
 - o ability to identify and remove bias

Demonstrator beta 1.0

- Tool created using Django and Python
- Facilitate its scalability with future data science applications developed in this programming language

Thanks to

Luis Quintero (SU) Sugandh Sinha (RISE)

Demo scenario	Data types	Classification models	Explainability techniques
Cardiovascular disease identif.	Tabular data: binary, categorical	Random forests	Actionable Feature Tweaking a.k.a Counterfactual Explanations
Time series tweaking via shapelet transformations	Time series: univariate and multivariate	Random shapelet forests SVM K-NN	Explanation guided by prototypes LIME on DFT features Global tweaking: k-NN, SVM Explain [T1]
Medical X-ray ranking and captioning	Images: x-ray medical images	Ranking: BI-CXN Tagging: TAG-CXN Captioning: LSTM-ETD	X-Ray Ranking and Explanatory Diagnostic Tagging

Demonstrator beta 1.0

Data exploration

Time series counterfactuals

Thank you!

The data science group at SU

https://dsv.su.se/en/research/research-areas/datascience/

The EXTREMUM project

https://dsv.su.se/en/research/research-areas/datascience/extremum-explainable-and-ethical-machine-learning-for-knowledge-discovery-from-medical-data-sources-1.442728